If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2+4c-40=0
a = 3; b = 4; c = -40;
Δ = b2-4ac
Δ = 42-4·3·(-40)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{31}}{2*3}=\frac{-4-4\sqrt{31}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{31}}{2*3}=\frac{-4+4\sqrt{31}}{6} $
| (x-1)(4+x)=0 | | x+(x*0.05)=105 | | 95x+71x=1 | | s*7-36=149 | | r+5=r×2.5 | | 2xx+1=-5 | | a+2+4a+1= | | -14+v=-13 | | 3x–(x–4)=14 | | m/2=5/3 | | X2-X=5x-5 | | X2-X=5x-x | | x-0.3x=33 | | -18=2+5w | | -2-x+6=8 | | -6+3x=32 | | -2-x=-24 | | -3(x-1)(8x+7)=0 | | -5x+11=30 | | x3/5x-6=3 | | 4y^2-60y-148=0 | | 1+3x=23+3x | | 2x+3/x+3=x+4/x+2 | | 2x+5/2=25/2 | | 2x-5/2=25/2 | | x^2-0.2x+30=0 | | 4x^2+32x-3=0 | | 4(2x-5)=-2(x-3) | | y-1/2=1y/3-5 | | 5x+2x^2=48 | | 6c=15c^2 | | 4y^-60y-148=0 |